New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > falxorfal | GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) |
Ref | Expression |
---|---|
falxorfal | ⊢ (( ⊥ ⊻ ⊥ ) ↔ ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1305 | . . 3 ⊢ (( ⊥ ⊻ ⊥ ) ↔ ¬ ( ⊥ ↔ ⊥ )) | |
2 | falbifal 1353 | . . 3 ⊢ (( ⊥ ↔ ⊥ ) ↔ ⊤ ) | |
3 | 1, 2 | xchbinx 301 | . 2 ⊢ (( ⊥ ⊻ ⊥ ) ↔ ¬ ⊤ ) |
4 | nottru 1348 | . 2 ⊢ (¬ ⊤ ↔ ⊥ ) | |
5 | 3, 4 | bitri 240 | 1 ⊢ (( ⊥ ⊻ ⊥ ) ↔ ⊥ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 ⊤ wtru 1316 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-tru 1319 df-fal 1320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |