NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  falxorfal GIF version

Theorem falxorfal 1361
Description: A identity. (Contributed by David A. Wheeler, 9-May-2015.)
Assertion
Ref Expression
falxorfal (( ⊥ ⊻ ⊥ ) ↔ ⊥ )

Proof of Theorem falxorfal
StepHypRef Expression
1 df-xor 1305 . . 3 (( ⊥ ⊻ ⊥ ) ↔ ¬ ( ⊥ ↔ ⊥ ))
2 falbifal 1353 . . 3 (( ⊥ ↔ ⊥ ) ↔ ⊤ )
31, 2xchbinx 301 . 2 (( ⊥ ⊻ ⊥ ) ↔ ¬ ⊤ )
4 nottru 1348 . 2 (¬ ⊤ ↔ ⊥ )
53, 4bitri 240 1 (( ⊥ ⊻ ⊥ ) ↔ ⊥ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304  wtru 1316  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-tru 1319  df-fal 1320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator