New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > falbitru | GIF version |
Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
falbitru | ⊢ (( ⊥ ↔ ⊤ ) ↔ ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 191 | . 2 ⊢ (( ⊥ ↔ ⊤ ) ↔ ( ⊤ ↔ ⊥ )) | |
2 | trubifal 1351 | . 2 ⊢ (( ⊤ ↔ ⊥ ) ↔ ⊥ ) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (( ⊥ ↔ ⊤ ) ↔ ⊥ ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊤ wtru 1316 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: falxortru 1360 |
Copyright terms: Public domain | W3C validator |