NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imdistanda GIF version

Theorem imdistanda 674
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
imdistanda (φ → ((ψ χ) → (ψ θ)))

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3 ((φ ψ) → (χθ))
21ex 423 . 2 (φ → (ψ → (χθ)))
32imdistand 673 1 (φ → ((ψ χ) → (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator