NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imdistand GIF version

Theorem imdistand 673
Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1 (φ → (ψ → (χθ)))
Assertion
Ref Expression
imdistand (φ → ((ψ χ) → (ψ θ)))

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2 (φ → (ψ → (χθ)))
2 imdistan 670 . 2 ((ψ → (χθ)) ↔ ((ψ χ) → (ψ θ)))
31, 2sylib 188 1 (φ → ((ψ χ) → (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  imdistanda  674  fconstfv  5456  nchoicelem19  6307
  Copyright terms: Public domain W3C validator