| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > embantd | GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (φ → ψ) |
| embantd.2 | ⊢ (φ → (χ → θ)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (φ → ((ψ → χ) → θ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (φ → ψ) | |
| 2 | embantd.2 | . . 3 ⊢ (φ → (χ → θ)) | |
| 3 | 2 | imim2d 48 | . 2 ⊢ (φ → ((ψ → χ) → (ψ → θ))) |
| 4 | 1, 3 | mpid 37 | 1 ⊢ (φ → ((ψ → χ) → θ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: spimt 1974 ltfintri 4467 evenoddnnnul 4515 evenodddisj 4517 nnadjoin 4521 sfintfin 4533 tfinnn 4535 nchoicelem17 6306 |
| Copyright terms: Public domain | W3C validator |