NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  embantd GIF version

Theorem embantd 50
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.)
Hypotheses
Ref Expression
embantd.1 (φψ)
embantd.2 (φ → (χθ))
Assertion
Ref Expression
embantd (φ → ((ψχ) → θ))

Proof of Theorem embantd
StepHypRef Expression
1 embantd.1 . 2 (φψ)
2 embantd.2 . . 3 (φ → (χθ))
32imim2d 48 . 2 (φ → ((ψχ) → (ψθ)))
41, 3mpid 37 1 (φ → ((ψχ) → θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  spimt  1974  ltfintri  4467  evenoddnnnul  4515  evenodddisj  4517  nnadjoin  4521  sfintfin  4533  tfinnn  4535  nchoicelem17  6306
  Copyright terms: Public domain W3C validator