| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > imim2d | GIF version | ||
| Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2d.1 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| imim2d | ⊢ (φ → ((θ → ψ) → (θ → χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2d.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (φ → (θ → (ψ → χ))) |
| 3 | 2 | a2d 23 | 1 ⊢ (φ → ((θ → ψ) → (θ → χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim2 49 embantd 50 imim12d 68 anc2r 539 pm5.31 571 dedlem0b 919 nic-ax 1438 nic-axALT 1439 19.23t 1800 nfimd 1808 spimt 1974 ssuni 3914 weds 5939 spacind 6288 |
| Copyright terms: Public domain | W3C validator |