NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imim2d GIF version

Theorem imim2d 48
Description: Deduction adding nested antecedents. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imim2d.1 (φ → (ψχ))
Assertion
Ref Expression
imim2d (φ → ((θψ) → (θχ)))

Proof of Theorem imim2d
StepHypRef Expression
1 imim2d.1 . . 3 (φ → (ψχ))
21a1d 22 . 2 (φ → (θ → (ψχ)))
32a2d 23 1 (φ → ((θψ) → (θχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim2  49  embantd  50  imim12d  68  anc2r  539  pm5.31  571  dedlem0b  919  nic-ax  1438  nic-axALT  1439  19.23t  1800  nfimd  1808  spimt  1974  ssuni  3914  weds  5939  spacind  6288
  Copyright terms: Public domain W3C validator