New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imorri | GIF version |
Description: Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
imorri.1 | ⊢ (¬ φ ∨ ψ) |
Ref | Expression |
---|---|
imorri | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imorri.1 | . 2 ⊢ (¬ φ ∨ ψ) | |
2 | imor 401 | . 2 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
3 | 1, 2 | mpbir 200 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: anmp 1516 |
Copyright terms: Public domain | W3C validator |