New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imori | GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.) |
Ref | Expression |
---|---|
imori.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
imori | ⊢ (¬ φ ∨ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imori.1 | . 2 ⊢ (φ → ψ) | |
2 | imor 401 | . 2 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (¬ φ ∨ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm2.1 406 pm2.26 853 rb-ax1 1517 |
Copyright terms: Public domain | W3C validator |