New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbir | GIF version |
Description: An inference from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbir.min | ⊢ ψ |
mpbir.maj | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
mpbir | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.min | . 2 ⊢ ψ | |
2 | mpbir.maj | . . 3 ⊢ (φ ↔ ψ) | |
3 | 2 | biimpri 197 | . 2 ⊢ (ψ → φ) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74ri 237 con4bii 288 orri 365 imorri 403 imnani 412 mpbir2an 886 mpbir3an 1134 tru 1321 nic-mpALT 1437 nic-ax 1438 nic-axALT 1439 mpto2OLD 1535 mtp-xor 1536 mtp-xorOLD 1537 mpgbir 1550 nfxfr 1570 19.35ri 1602 a9ev 1656 exiftruOLD 1658 a9e 1951 cbval2 2004 cbvex2 2005 sbt 2033 moaneu 2263 moanmo 2264 axi12 2333 axext2 2335 eqeltri 2423 nfcxfr 2487 neirr 2522 exmidne 2523 eqnetri 2534 mprgbir 2685 vex 2863 issetri 2867 moeq 3013 ru 3046 eqsstri 3302 3sstr4i 3311 necompl 3545 tpid1 3830 tpid2 3831 tpid3 3833 pwv 3887 uni0 3919 nincompl 4073 ninexg 4098 snex 4112 opkth1g 4131 snel1c 4141 1cex 4143 0nel1c 4160 opkabssvvk 4209 eqrelkriiv 4214 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 xpkvexg 4286 ins2kexg 4306 ins3kexg 4307 0cnsuc 4402 nulel0c 4423 0fin 4424 nnsucelr 4429 vfin1cltv 4548 phiall 4619 eqbrtri 4659 dmi 4920 coi2 5096 funi 5138 funsn 5148 fun0 5155 f10 5317 f1o00 5318 f1oi 5321 f1ovi 5322 f1osn 5323 fvopab3ig 5388 1stfo 5506 2ndfo 5507 swapf1o 5512 swapres 5513 opfv1st 5515 opfv2nd 5516 dmep 5525 ovidig 5594 ovidi 5595 ovig 5598 ov3 5600 funmpt 5688 op1st2nd 5791 composefn 5819 fnfullfun 5859 fvfullfunlem2 5863 ssetpov 5945 fundmen 6044 xpassen 6058 enprmaplem5 6081 enpw 6088 muccom 6135 mucass 6136 1cnc 6140 df1c3 6141 mucid1 6144 ncaddccl 6145 ncpwpw1 6154 1p1e2c 6156 2p1e3c 6157 tcdi 6165 fnce 6177 ce0addcnnul 6180 ce0nulnc 6185 fce 6189 ce2 6193 tlenc1c 6241 ncvsq 6257 0lt1c 6259 nmembers1lem2 6270 nchoicelem9 6298 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |