![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > mpbir | GIF version |
Description: An inference from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbir.min | ⊢ ψ |
mpbir.maj | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
mpbir | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.min | . 2 ⊢ ψ | |
2 | mpbir.maj | . . 3 ⊢ (φ ↔ ψ) | |
3 | 2 | biimpri 197 | . 2 ⊢ (ψ → φ) |
4 | 1, 3 | ax-mp 8 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74ri 237 con4bii 288 orri 365 imorri 403 imnani 412 mpbir2an 886 mpbir3an 1134 tru 1321 nic-mpALT 1437 nic-ax 1438 nic-axALT 1439 mpto2OLD 1535 mtp-xor 1536 mtp-xorOLD 1537 mpgbir 1550 nfxfr 1570 19.35ri 1602 a9ev 1656 exiftruOLD 1658 a9e 1951 cbval2 2004 cbvex2 2005 sbt 2033 moaneu 2263 moanmo 2264 axi12 2333 axext2 2335 eqeltri 2423 nfcxfr 2486 neirr 2521 exmidne 2522 eqnetri 2533 mprgbir 2684 vex 2862 issetri 2866 moeq 3012 ru 3045 eqsstri 3301 3sstr4i 3310 necompl 3544 tpid1 3829 tpid2 3830 tpid3 3832 pwv 3886 uni0 3918 nincompl 4072 ninexg 4097 snex 4111 opkth1g 4130 snel1c 4140 1cex 4142 0nel1c 4159 opkabssvvk 4208 eqrelkriiv 4213 sikss1c1c 4267 ins2kss 4279 ins3kss 4280 xpkvexg 4285 ins2kexg 4305 ins3kexg 4306 0cnsuc 4401 nulel0c 4422 0fin 4423 nnsucelr 4428 vfin1cltv 4547 phiall 4618 eqbrtri 4658 dmi 4919 coi2 5095 funi 5137 funsn 5147 fun0 5154 f10 5316 f1o00 5317 f1oi 5320 f1ovi 5321 f1osn 5322 fvopab3ig 5387 1stfo 5505 2ndfo 5506 swapf1o 5511 swapres 5512 opfv1st 5514 opfv2nd 5515 dmep 5524 ovidig 5593 ovidi 5594 ovig 5597 ov3 5599 funmpt 5687 op1st2nd 5790 composefn 5818 fnfullfun 5858 fvfullfunlem2 5862 ssetpov 5944 fundmen 6043 xpassen 6057 enprmaplem5 6080 enpw 6087 muccom 6134 mucass 6135 1cnc 6139 df1c3 6140 mucid1 6143 ncaddccl 6144 ncpwpw1 6153 1p1e2c 6155 2p1e3c 6156 tcdi 6164 fnce 6176 ce0addcnnul 6179 ce0nulnc 6184 fce 6188 ce2 6192 tlenc1c 6240 ncvsq 6256 0lt1c 6258 nmembers1lem2 6269 nchoicelem9 6297 dmfrec 6316 |
Copyright terms: Public domain | W3C validator |