NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imp55 GIF version

Theorem imp55 584
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1 (φ → (ψ → (χ → (θ → (τη)))))
Assertion
Ref Expression
imp55 (((φ (ψ (χ θ))) τ) → η)

Proof of Theorem imp55
StepHypRef Expression
1 imp5.1 . . 3 (φ → (ψ → (χ → (θ → (τη)))))
21imp4a 572 . 2 (φ → (ψ → ((χ θ) → (τη))))
32imp42 577 1 (((φ (ψ (χ θ))) τ) → η)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator