NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imp4a GIF version

Theorem imp4a 572
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (φ → (ψ → (χ → (θτ))))
Assertion
Ref Expression
imp4a (φ → (ψ → ((χ θ) → τ)))

Proof of Theorem imp4a
StepHypRef Expression
1 imp4.1 . 2 (φ → (ψ → (χ → (θτ))))
2 impexp 433 . 2 (((χ θ) → τ) ↔ (χ → (θτ)))
31, 2syl6ibr 218 1 (φ → (ψ → ((χ θ) → τ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  imp4b  573  imp4d  575  imp55  584  imp511  585  reuss2  3536
  Copyright terms: Public domain W3C validator