| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > jao | GIF version | ||
| Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| jao | ⊢ ((φ → ψ) → ((χ → ψ) → ((φ ∨ χ) → ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.44 497 | . 2 ⊢ (((φ → ψ) ∧ (χ → ψ)) → ((φ ∨ χ) → ψ)) | |
| 2 | 1 | ex 423 | 1 ⊢ ((φ → ψ) → ((χ → ψ) → ((φ ∨ χ) → ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: 3jao 1243 | 
| Copyright terms: Public domain | W3C validator |