New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jao | GIF version |
Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.) |
Ref | Expression |
---|---|
jao | ⊢ ((φ → ψ) → ((χ → ψ) → ((φ ∨ χ) → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.44 497 | . 2 ⊢ (((φ → ψ) ∧ (χ → ψ)) → ((φ ∨ χ) → ψ)) | |
2 | 1 | ex 423 | 1 ⊢ ((φ → ψ) → ((χ → ψ) → ((φ ∨ χ) → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: 3jao 1243 |
Copyright terms: Public domain | W3C validator |