| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm3.44 | GIF version | ||
| Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm3.44 | ⊢ (((ψ → φ) ∧ (χ → φ)) → ((ψ ∨ χ) → φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((ψ → φ) → (ψ → φ)) | |
| 2 | id 19 | . 2 ⊢ ((χ → φ) → (χ → φ)) | |
| 3 | 1, 2 | jaao 495 | 1 ⊢ (((ψ → φ) ∧ (χ → φ)) → ((ψ ∨ χ) → φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: jao 498 jaob 758 |
| Copyright terms: Public domain | W3C validator |