NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.44 GIF version

Theorem pm3.44 497
Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Assertion
Ref Expression
pm3.44 (((ψφ) (χφ)) → ((ψ χ) → φ))

Proof of Theorem pm3.44
StepHypRef Expression
1 id 19 . 2 ((ψφ) → (ψφ))
2 id 19 . 2 ((χφ) → (χφ))
31, 2jaao 495 1 (((ψφ) (χφ)) → ((ψ χ) → φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  jao  498  jaob  758
  Copyright terms: Public domain W3C validator