New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jao | GIF version |
Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3jao | ⊢ (((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ)) → ((φ ∨ χ ∨ θ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 935 | . 2 ⊢ ((φ ∨ χ ∨ θ) ↔ ((φ ∨ χ) ∨ θ)) | |
2 | jao 498 | . . . 4 ⊢ ((φ → ψ) → ((χ → ψ) → ((φ ∨ χ) → ψ))) | |
3 | jao 498 | . . . 4 ⊢ (((φ ∨ χ) → ψ) → ((θ → ψ) → (((φ ∨ χ) ∨ θ) → ψ))) | |
4 | 2, 3 | syl6 29 | . . 3 ⊢ ((φ → ψ) → ((χ → ψ) → ((θ → ψ) → (((φ ∨ χ) ∨ θ) → ψ)))) |
5 | 4 | 3imp 1145 | . 2 ⊢ (((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ)) → (((φ ∨ χ) ∨ θ) → ψ)) |
6 | 1, 5 | syl5bi 208 | 1 ⊢ (((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ)) → ((φ ∨ χ ∨ θ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∨ w3o 933 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: 3jaob 1244 3jaoi 1245 3jaod 1246 |
Copyright terms: Public domain | W3C validator |