NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  luklem5 GIF version

Theorem luklem5 1427
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem5 (φ → (ψφ))

Proof of Theorem luklem5
StepHypRef Expression
1 luklem3 1425 . 2 (φ → (((¬ φφ) → φ) → (ψφ)))
2 luklem4 1426 . 2 ((((¬ φφ) → φ) → (ψφ)) → (ψφ))
31, 2luklem1 1423 1 (φ → (ψφ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  luklem6  1428  luklem7  1429  ax1  1431
  Copyright terms: Public domain W3C validator