NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  luklem3 GIF version

Theorem luklem3 1425
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem3 (φ → (((¬ φψ) → χ) → (θχ)))

Proof of Theorem luklem3
StepHypRef Expression
1 luk-3 1422 . 2 (φ → (¬ φ → ¬ θ))
2 luklem2 1424 . 2 ((¬ φ → ¬ θ) → (((¬ φψ) → χ) → (θχ)))
31, 2luklem1 1423 1 (φ → (((¬ φψ) → χ) → (θχ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  luklem4  1426  luklem5  1427
  Copyright terms: Public domain W3C validator