| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > luklem3 | GIF version | ||
| Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| luklem3 | ⊢ (φ → (((¬ φ → ψ) → χ) → (θ → χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | luk-3 1422 | . 2 ⊢ (φ → (¬ φ → ¬ θ)) | |
| 2 | luklem2 1424 | . 2 ⊢ ((¬ φ → ¬ θ) → (((¬ φ → ψ) → χ) → (θ → χ))) | |
| 3 | 1, 2 | luklem1 1423 | 1 ⊢ (φ → (((¬ φ → ψ) → χ) → (θ → χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
| This theorem is referenced by: luklem4 1426 luklem5 1427 |
| Copyright terms: Public domain | W3C validator |