| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > luklem1 | GIF version | ||
| Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 23-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| luklem1.1 | ⊢ (φ → ψ) |
| luklem1.2 | ⊢ (ψ → χ) |
| Ref | Expression |
|---|---|
| luklem1 | ⊢ (φ → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | luklem1.2 | . 2 ⊢ (ψ → χ) | |
| 2 | luklem1.1 | . . 3 ⊢ (φ → ψ) | |
| 3 | luk-1 1420 | . . 3 ⊢ ((φ → ψ) → ((ψ → χ) → (φ → χ))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((ψ → χ) → (φ → χ)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (φ → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
| This theorem is referenced by: luklem2 1424 luklem3 1425 luklem4 1426 luklem5 1427 luklem6 1428 luklem7 1429 ax2 1432 ax3 1433 |
| Copyright terms: Public domain | W3C validator |