| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > merco1lem10 | GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merco1lem10 | ⊢ (((((φ → ψ) → χ) → (τ → χ)) → φ) → (θ → φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1 1478 | . . 3 ⊢ (((((χ → φ) → (τ → ⊥ )) → φ) → (φ → ψ)) → (((φ → ψ) → χ) → (τ → χ))) | |
| 2 | merco1lem2 1482 | . . 3 ⊢ ((((((χ → φ) → (τ → ⊥ )) → φ) → (φ → ψ)) → (((φ → ψ) → χ) → (τ → χ))) → ((((φ → ψ) → (θ → ⊥ )) → ((((χ → φ) → (τ → ⊥ )) → φ) → ⊥ )) → (((φ → ψ) → χ) → (τ → χ)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((φ → ψ) → (θ → ⊥ )) → ((((χ → φ) → (τ → ⊥ )) → φ) → ⊥ )) → (((φ → ψ) → χ) → (τ → χ))) |
| 4 | merco1 1478 | . 2 ⊢ (((((φ → ψ) → (θ → ⊥ )) → ((((χ → φ) → (τ → ⊥ )) → φ) → ⊥ )) → (((φ → ψ) → χ) → (τ → χ))) → (((((φ → ψ) → χ) → (τ → χ)) → φ) → (θ → φ))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((((φ → ψ) → χ) → (τ → χ)) → φ) → (θ → φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥ wfal 1317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
| This theorem is referenced by: retbwax1 1500 |
| Copyright terms: Public domain | W3C validator |