New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merco1lem2 | GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem2 | ⊢ (((φ → ψ) → χ) → (((ψ → τ) → (φ → ⊥ )) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retbwax2 1481 | . . 3 ⊢ ((((ψ → τ) → (φ → ⊥ )) → ⊥ ) → ((χ → φ) → (((ψ → τ) → (φ → ⊥ )) → ⊥ ))) | |
2 | merco1 1478 | . . 3 ⊢ (((((ψ → τ) → (φ → ⊥ )) → ⊥ ) → ((χ → φ) → (((ψ → τ) → (φ → ⊥ )) → ⊥ ))) → ((((χ → φ) → (((ψ → τ) → (φ → ⊥ )) → ⊥ )) → ψ) → (φ → ψ))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((χ → φ) → (((ψ → τ) → (φ → ⊥ )) → ⊥ )) → ψ) → (φ → ψ)) |
4 | merco1 1478 | . 2 ⊢ (((((χ → φ) → (((ψ → τ) → (φ → ⊥ )) → ⊥ )) → ψ) → (φ → ψ)) → (((φ → ψ) → χ) → (((ψ → τ) → (φ → ⊥ )) → χ))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((φ → ψ) → χ) → (((ψ → τ) → (φ → ⊥ )) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: merco1lem3 1483 merco1lem10 1491 merco1lem11 1492 merco1lem18 1499 |
Copyright terms: Public domain | W3C validator |