Proof of Theorem merco1lem11
Step | Hyp | Ref
| Expression |
1 | | merco1lem5 1485 |
. . . . . 6
⊢ ((((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ) → ⊥ ) → (((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ )) |
2 | | merco1lem3 1483 |
. . . . . 6
⊢ (((((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ) → ⊥ ) → (((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ )) → (((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ))) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ (((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) |
4 | | merco1lem4 1484 |
. . . . 5
⊢ ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) → ((((χ
→ (φ → τ)) → ⊥ ) → ⊥ ) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ))) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ ((((χ → (φ → τ)) → ⊥ ) → ⊥ ) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) |
6 | | merco1lem5 1485 |
. . . 4
⊢ (((((χ → (φ → τ)) → ⊥ ) → ⊥ ) →
((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) → ((χ
→ (φ → τ)) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ ((χ → (φ → τ)) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) |
8 | | merco1lem4 1484 |
. . 3
⊢ (((χ → (φ → τ)) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) → ((φ
→ τ) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ ))) |
9 | 7, 8 | ax-mp 5 |
. 2
⊢ ((φ → τ) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) |
10 | | merco1 1478 |
. . 3
⊢ (((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → φ) → ((φ → ψ) → (((χ → (φ → τ)) → ⊥ ) → ψ))) |
11 | | merco1lem2 1482 |
. . 3
⊢ ((((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → φ) → ((φ → ψ) → (((χ → (φ → τ)) → ⊥ ) → ψ))) → (((φ → τ) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) → ((φ
→ ψ) → (((χ → (φ → τ)) → ⊥ ) → ψ)))) |
12 | 10, 11 | ax-mp 5 |
. 2
⊢ (((φ → τ) → ((((ψ → φ) → (((χ → (φ → τ)) → ⊥ ) → ⊥ )) →
⊥ ) → ⊥ )) → ((φ
→ ψ) → (((χ → (φ → τ)) → ⊥ ) → ψ))) |
13 | 9, 12 | ax-mp 5 |
1
⊢ ((φ → ψ) → (((χ → (φ → τ)) → ⊥ ) → ψ)) |