New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merco1lem7 | GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem7 | ⊢ (φ → (((ψ → χ) → ψ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1lem5 1485 | . . 3 ⊢ ((((ψ → ⊥ ) → (((ψ → χ) → ψ) → ⊥ )) → χ) → (ψ → χ)) | |
2 | merco1 1478 | . . 3 ⊢ (((((ψ → ⊥ ) → (((ψ → χ) → ψ) → ⊥ )) → χ) → (ψ → χ)) → (((ψ → χ) → ψ) → (((ψ → χ) → ψ) → ψ))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (((ψ → χ) → ψ) → (((ψ → χ) → ψ) → ψ)) |
4 | merco1lem6 1486 | . 2 ⊢ ((((ψ → χ) → ψ) → (((ψ → χ) → ψ) → ψ)) → (φ → (((ψ → χ) → ψ) → ψ))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (φ → (((ψ → χ) → ψ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: retbwax3 1488 merco1lem17 1498 |
Copyright terms: Public domain | W3C validator |