NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  retbwax3 GIF version

Theorem retbwax3 1488
Description: tbw-ax3 1467 rederived from merco1 1478. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
retbwax3 (((φψ) → φ) → φ)

Proof of Theorem retbwax3
StepHypRef Expression
1 retbwax2 1481 . 2 (φ → (φφ))
2 merco1lem7 1487 . 2 ((φ → (φφ)) → (((φψ) → φ) → φ))
31, 2ax-mp 5 1 (((φψ) → φ) → φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator