NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  merco1lem8 GIF version

Theorem merco1lem8 1489
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem8 (φ → ((ψ → (ψχ)) → (ψχ)))

Proof of Theorem merco1lem8
StepHypRef Expression
1 merco1lem6 1486 . 2 ((ψ → (ψχ)) → ((ψ → (ψχ)) → (ψχ)))
2 merco1lem6 1486 . 2 (((ψ → (ψχ)) → ((ψ → (ψχ)) → (ψχ))) → (φ → ((ψ → (ψχ)) → (ψχ))))
31, 2ax-mp 5 1 (φ → ((ψ → (ψχ)) → (ψχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  merco1lem9  1490  merco1lem14  1495
  Copyright terms: Public domain W3C validator