| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpbi2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 | ⊢ (φ → ψ) |
| mpbi2and.2 | ⊢ (φ → χ) |
| mpbi2and.3 | ⊢ (φ → ((ψ ∧ χ) ↔ θ)) |
| Ref | Expression |
|---|---|
| mpbi2and | ⊢ (φ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | mpbi2and.2 | . . 3 ⊢ (φ → χ) | |
| 3 | 1, 2 | jca 518 | . 2 ⊢ (φ → (ψ ∧ χ)) |
| 4 | mpbi2and.3 | . 2 ⊢ (φ → ((ψ ∧ χ) ↔ θ)) | |
| 5 | 3, 4 | mpbid 201 | 1 ⊢ (φ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |