NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpbi2and GIF version

Theorem mpbi2and 887
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1 (φψ)
mpbi2and.2 (φχ)
mpbi2and.3 (φ → ((ψ χ) ↔ θ))
Assertion
Ref Expression
mpbi2and (φθ)

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3 (φψ)
2 mpbi2and.2 . . 3 (φχ)
31, 2jca 518 . 2 (φ → (ψ χ))
4 mpbi2and.3 . 2 (φ → ((ψ χ) ↔ θ))
53, 4mpbid 201 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator