New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbi2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 | ⊢ (φ → ψ) |
mpbi2and.2 | ⊢ (φ → χ) |
mpbi2and.3 | ⊢ (φ → ((ψ ∧ χ) ↔ θ)) |
Ref | Expression |
---|---|
mpbi2and | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 | . . 3 ⊢ (φ → ψ) | |
2 | mpbi2and.2 | . . 3 ⊢ (φ → χ) | |
3 | 1, 2 | jca 518 | . 2 ⊢ (φ → (ψ ∧ χ)) |
4 | mpbi2and.3 | . 2 ⊢ (φ → ((ψ ∧ χ) ↔ θ)) | |
5 | 3, 4 | mpbid 201 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |