New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbid | GIF version |
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbid.min | ⊢ (φ → ψ) |
mpbid.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mpbid | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbid.min | . 2 ⊢ (φ → ψ) | |
2 | mpbid.maj | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 2 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
4 | 1, 3 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbii 202 mpbi2and 887 dvelimdf 2082 ax11eq 2193 ax11el 2194 eqtrd 2385 eleqtrd 2429 neeqtrd 2538 3netr3d 2542 rexlimd2 2736 ceqsalt 2881 vtoclgft 2905 vtoclegft 2926 eueq2 3010 sbceq1dd 3052 csbexg 3146 csbiedf 3173 sseqtrd 3307 3sstr3d 3313 ifbothda 3692 elimdhyp 3715 snssd 3853 dfnfc2 3909 opkth1g 4130 iota4 4357 findsd 4410 ltfintri 4466 t1csfin1c 4545 vfintle 4546 vfin1cltv 4547 vfinspclt 4552 breqtrd 4663 3brtr3d 4668 fssres2 5239 feu 5242 f1orescnv 5301 resdif 5306 fimacnv 5411 fsn2 5434 isoini2 5498 clos1is 5881 erthi 5970 mapsn 6026 enmap2lem5 6067 enmap1lem5 6073 enprmaplem5 6080 eqncg 6126 ceclr 6187 ceclnn1 6189 nc0suc 6217 te0c 6237 nmembers1lem3 6270 spacis 6288 nchoicelem5 6293 nchoicelem17 6305 nchoicelem19 6307 nchoice 6308 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |