New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbid | GIF version |
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbid.min | ⊢ (φ → ψ) |
mpbid.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mpbid | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbid.min | . 2 ⊢ (φ → ψ) | |
2 | mpbid.maj | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 2 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
4 | 1, 3 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbii 202 mpbi2and 887 dvelimdf 2082 ax11eq 2193 ax11el 2194 eqtrd 2385 eleqtrd 2429 neeqtrd 2539 3netr3d 2543 rexlimd2 2737 ceqsalt 2882 vtoclgft 2906 vtoclegft 2927 eueq2 3011 sbceq1dd 3053 csbexg 3147 csbiedf 3174 sseqtrd 3308 3sstr3d 3314 ifbothda 3693 elimdhyp 3716 snssd 3854 dfnfc2 3910 opkth1g 4131 iota4 4358 findsd 4411 ltfintri 4467 t1csfin1c 4546 vfintle 4547 vfin1cltv 4548 vfinspclt 4553 breqtrd 4664 3brtr3d 4669 fssres2 5240 feu 5243 f1orescnv 5302 resdif 5307 fimacnv 5412 fsn2 5435 isoini2 5499 clos1is 5882 erthi 5971 mapsn 6027 enmap2lem5 6068 enmap1lem5 6074 enprmaplem5 6081 eqncg 6127 ceclr 6188 ceclnn1 6190 nc0suc 6218 te0c 6238 nmembers1lem3 6271 spacis 6289 nchoicelem5 6294 nchoicelem17 6306 nchoicelem19 6308 nchoice 6309 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |