New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbir2an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
mpbir2an.1 | ⊢ ψ |
mpbir2an.2 | ⊢ χ |
mpbiran2an.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
mpbir2an | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 | . 2 ⊢ χ | |
2 | mpbir2an.1 | . . 3 ⊢ ψ | |
3 | mpbiran2an.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
4 | 2, 3 | mpbiran 884 | . 2 ⊢ (φ ↔ χ) |
5 | 1, 4 | mpbir 200 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 3pm3.2i 1130 ax12olem4 1930 euequ1 2292 eqssi 3289 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 cokrelk 4285 cnvkexg 4287 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 eqtfinrelk 4487 0ceven 4506 xpvv 4844 fnsn 5153 fnresi 5201 fn0 5203 f0 5249 fconst 5251 f10 5317 f1o0 5320 f1oi 5321 f1ovi 5322 f1osn 5323 fvi 5443 isoid 5491 1stfo 5506 2ndfo 5507 swapf1o 5512 xpassen 6058 2p1e3c 6157 fce 6189 0lt1c 6259 nnltp1c 6263 frecxp 6315 scancan 6332 |
Copyright terms: Public domain | W3C validator |