NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpii GIF version

Theorem mpii 39
Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.)
Hypotheses
Ref Expression
mpii.1 χ
mpii.2 (φ → (ψ → (χθ)))
Assertion
Ref Expression
mpii (φ → (ψθ))

Proof of Theorem mpii
StepHypRef Expression
1 mpii.1 . . 3 χ
21a1i 10 . 2 (ψχ)
3 mpii.2 . 2 (φ → (ψ → (χθ)))
42, 3mpdi 38 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  equveli  1988  intmin  3947  dfiin2g  4001
  Copyright terms: Public domain W3C validator