New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syld | GIF version |
Description: Syllogism deduction.
(Contributed by NM, 5-Aug-1993.) (Proof shortened
by O'Cat, 19-Feb-2008.) (Proof shortened by Wolf Lammen, 3-Aug-2012.)
Notice that syld 40 has the same form as syl 15 with φ added in front of each hypothesis and conclusion. When all theorems referenced in a proof are converted in this way, we can replace φ with a hypothesis of the proof, allowing the hypothesis to be eliminated with id 19 and become an antecedent. The Deduction Theorem for propositional calculus, e.g. Theorem 3 in [Margaris] p. 56, tells us that this procedure is always possible. |
Ref | Expression |
---|---|
syld.1 | ⊢ (φ → (ψ → χ)) |
syld.2 | ⊢ (φ → (χ → θ)) |
Ref | Expression |
---|---|
syld | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | syld.2 | . . 3 ⊢ (φ → (χ → θ)) | |
3 | 2 | a1d 22 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
4 | 1, 3 | mpdd 36 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 3syld 51 sylsyld 52 nsyld 132 pm2.61d 150 sylibd 205 sylbid 206 sylibrd 225 sylbird 226 syland 467 alrimdd 1768 dvelimv 1939 ax10lem6 1943 dral1 1965 cbv1h 1978 sbied 2036 sbequi 2059 dral1-o 2154 ax11indalem 2197 ax11inda2ALT 2198 pwadjoin 4120 nnsucelr 4429 nndisjeq 4430 lenltfin 4470 ncfinlower 4484 tfin11 4494 evenodddisj 4517 nnadjoin 4521 nnpweq 4524 tfinnn 4535 sfinltfin 4536 vfintle 4547 vfinspsslem1 4551 eqfnfv 5393 ncssfin 6152 addccan2nc 6266 spacind 6288 nchoicelem9 6298 nchoicelem12 6301 nchoicelem17 6306 nchoicelem19 6308 fnfreclem3 6320 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |