NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intmin GIF version

Theorem intmin 3947
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin (A B{x B A x} = A)
Distinct variable groups:   x,A   x,B

Proof of Theorem intmin
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . 5 y V
21elintrab 3939 . . . 4 (y {x B A x} ↔ x B (A xy x))
3 ssid 3291 . . . . 5 A A
4 sseq2 3294 . . . . . . 7 (x = A → (A xA A))
5 eleq2 2414 . . . . . . 7 (x = A → (y xy A))
64, 5imbi12d 311 . . . . . 6 (x = A → ((A xy x) ↔ (A Ay A)))
76rspcv 2952 . . . . 5 (A B → (x B (A xy x) → (A Ay A)))
83, 7mpii 39 . . . 4 (A B → (x B (A xy x) → y A))
92, 8syl5bi 208 . . 3 (A B → (y {x B A x} → y A))
109ssrdv 3279 . 2 (A B{x B A x} A)
11 ssintub 3945 . . 3 A {x B A x}
1211a1i 10 . 2 (A BA {x B A x})
1310, 12eqssd 3290 1 (A B{x B A x} = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  wral 2615  {crab 2619   wss 3258  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-int 3928
This theorem is referenced by:  intmin2  3954
  Copyright terms: Public domain W3C validator