New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intmin | GIF version |
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
intmin | ⊢ (A ∈ B → ∩{x ∈ B ∣ A ⊆ x} = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . 5 ⊢ y ∈ V | |
2 | 1 | elintrab 3939 | . . . 4 ⊢ (y ∈ ∩{x ∈ B ∣ A ⊆ x} ↔ ∀x ∈ B (A ⊆ x → y ∈ x)) |
3 | ssid 3291 | . . . . 5 ⊢ A ⊆ A | |
4 | sseq2 3294 | . . . . . . 7 ⊢ (x = A → (A ⊆ x ↔ A ⊆ A)) | |
5 | eleq2 2414 | . . . . . . 7 ⊢ (x = A → (y ∈ x ↔ y ∈ A)) | |
6 | 4, 5 | imbi12d 311 | . . . . . 6 ⊢ (x = A → ((A ⊆ x → y ∈ x) ↔ (A ⊆ A → y ∈ A))) |
7 | 6 | rspcv 2952 | . . . . 5 ⊢ (A ∈ B → (∀x ∈ B (A ⊆ x → y ∈ x) → (A ⊆ A → y ∈ A))) |
8 | 3, 7 | mpii 39 | . . . 4 ⊢ (A ∈ B → (∀x ∈ B (A ⊆ x → y ∈ x) → y ∈ A)) |
9 | 2, 8 | syl5bi 208 | . . 3 ⊢ (A ∈ B → (y ∈ ∩{x ∈ B ∣ A ⊆ x} → y ∈ A)) |
10 | 9 | ssrdv 3279 | . 2 ⊢ (A ∈ B → ∩{x ∈ B ∣ A ⊆ x} ⊆ A) |
11 | ssintub 3945 | . . 3 ⊢ A ⊆ ∩{x ∈ B ∣ A ⊆ x} | |
12 | 11 | a1i 10 | . 2 ⊢ (A ∈ B → A ⊆ ∩{x ∈ B ∣ A ⊆ x}) |
13 | 10, 12 | eqssd 3290 | 1 ⊢ (A ∈ B → ∩{x ∈ B ∣ A ⊆ x} = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∀wral 2615 {crab 2619 ⊆ wss 3258 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
This theorem is referenced by: intmin2 3954 |
Copyright terms: Public domain | W3C validator |