NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanan GIF version

Theorem nanan 1289
Description: Write 'and' in terms of 'nand'. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
nanan ((φ ψ) ↔ ¬ (φ ψ))

Proof of Theorem nanan
StepHypRef Expression
1 df-nan 1288 . 2 ((φ ψ) ↔ ¬ (φ ψ))
21con2bii 322 1 ((φ ψ) ↔ ¬ (φ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-nan 1288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator