Theorem List for New Foundations Explorer - 1201-1300 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | syl213anc 1201 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (((ψ
∧ χ)
∧ θ
∧ (τ
∧ η
∧ ζ)) → σ) ⇒ ⊢ (φ
→ σ) |
|
Theorem | syl231anc 1202 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (((ψ
∧ χ)
∧ (θ ∧ τ ∧ η) ∧ ζ) → σ) ⇒ ⊢ (φ
→ σ) |
|
Theorem | syl312anc 1203 |
Syllogism combined with contraction. (Contributed by NM,
11-Jul-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
τ ∧
(η ∧
ζ)) → σ) ⇒ ⊢ (φ
→ σ) |
|
Theorem | syl321anc 1204 |
Syllogism combined with contraction. (Contributed by NM,
11-Jul-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η) ∧
ζ) → σ) ⇒ ⊢ (φ
→ σ) |
|
Theorem | syl133anc 1205 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ ((ψ
∧ (χ
∧ θ
∧ τ)
∧ (η
∧ ζ
∧ σ)) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl313anc 1206 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
τ ∧
(η ∧
ζ ∧
σ)) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl331anc 1207 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η ∧
ζ) ∧
σ) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl223anc 1208 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (((ψ
∧ χ)
∧ (θ ∧ τ) ∧ (η ∧ ζ ∧ σ)) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl232anc 1209 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (((ψ
∧ χ)
∧ (θ ∧ τ ∧ η) ∧ (ζ ∧ σ)) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl322anc 1210 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η) ∧
(ζ ∧
σ)) → ρ) ⇒ ⊢ (φ
→ ρ) |
|
Theorem | syl233anc 1211 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (φ
→ ρ) & ⊢ (((ψ
∧ χ)
∧ (θ ∧ τ ∧ η) ∧ (ζ ∧ σ ∧ ρ)) → μ) ⇒ ⊢ (φ
→ μ) |
|
Theorem | syl323anc 1212 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (φ
→ ρ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η) ∧
(ζ ∧
σ ∧
ρ)) → μ) ⇒ ⊢ (φ
→ μ) |
|
Theorem | syl332anc 1213 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (φ
→ ρ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η ∧
ζ) ∧
(σ ∧ ρ))
→ μ)
⇒ ⊢ (φ → μ) |
|
Theorem | syl333anc 1214 |
A syllogism inference combined with contraction. (Contributed by NM,
10-Mar-2012.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ τ) & ⊢ (φ
→ η) & ⊢ (φ
→ ζ) & ⊢ (φ
→ σ) & ⊢ (φ
→ ρ) & ⊢ (φ
→ μ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
(τ ∧
η ∧
ζ) ∧
(σ ∧ ρ ∧ μ)) →
λ) ⇒ ⊢ (φ
→ λ) |
|
Theorem | syl3an1 1215 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
→ ψ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((φ
∧ χ
∧ θ) → τ) |
|
Theorem | syl3an2 1216 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
→ χ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ φ
∧ θ) → τ) |
|
Theorem | syl3an3 1217 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
→ θ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ χ
∧ φ)
→ τ) |
|
Theorem | syl3an1b 1218 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
↔ ψ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((φ
∧ χ
∧ θ) → τ) |
|
Theorem | syl3an2b 1219 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
↔ χ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ φ
∧ θ) → τ) |
|
Theorem | syl3an3b 1220 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (φ
↔ θ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ χ
∧ φ)
→ τ) |
|
Theorem | syl3an1br 1221 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (ψ
↔ φ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((φ
∧ χ
∧ θ) → τ) |
|
Theorem | syl3an2br 1222 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (χ
↔ φ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ φ
∧ θ) → τ) |
|
Theorem | syl3an3br 1223 |
A syllogism inference. (Contributed by NM, 22-Aug-1995.)
|
⊢ (θ
↔ φ) & ⊢ ((ψ
∧ χ
∧ θ) → τ) ⇒ ⊢ ((ψ
∧ χ
∧ φ)
→ τ) |
|
Theorem | syl3an 1224 |
A triple syllogism inference. (Contributed by NM, 13-May-2004.)
|
⊢ (φ
→ ψ) & ⊢ (χ
→ θ) & ⊢ (τ
→ η) & ⊢ ((ψ
∧ θ
∧ η)
→ ζ)
⇒ ⊢ ((φ ∧ χ ∧ τ) → ζ) |
|
Theorem | syl3anb 1225 |
A triple syllogism inference. (Contributed by NM, 15-Oct-2005.)
|
⊢ (φ
↔ ψ) & ⊢ (χ
↔ θ) & ⊢ (τ
↔ η) & ⊢ ((ψ
∧ θ
∧ η)
→ ζ)
⇒ ⊢ ((φ ∧ χ ∧ τ) → ζ) |
|
Theorem | syl3anbr 1226 |
A triple syllogism inference. (Contributed by NM, 29-Dec-2011.)
|
⊢ (ψ
↔ φ) & ⊢ (θ
↔ χ) & ⊢ (η
↔ τ) & ⊢ ((ψ
∧ θ
∧ η)
→ ζ)
⇒ ⊢ ((φ ∧ χ ∧ τ) → ζ) |
|
Theorem | syld3an3 1227 |
A syllogism inference. (Contributed by NM, 20-May-2007.)
|
⊢ ((φ
∧ ψ
∧ χ)
→ θ) & ⊢ ((φ
∧ ψ
∧ θ) → τ) ⇒ ⊢ ((φ
∧ ψ
∧ χ)
→ τ) |
|
Theorem | syld3an1 1228 |
A syllogism inference. (Contributed by NM, 7-Jul-2008.)
|
⊢ ((χ
∧ ψ
∧ θ) → φ)
& ⊢ ((φ
∧ ψ
∧ θ) → τ) ⇒ ⊢ ((χ
∧ ψ
∧ θ) → τ) |
|
Theorem | syld3an2 1229 |
A syllogism inference. (Contributed by NM, 20-May-2007.)
|
⊢ ((φ
∧ χ
∧ θ) → ψ)
& ⊢ ((φ
∧ ψ
∧ θ) → τ) ⇒ ⊢ ((φ
∧ χ
∧ θ) → τ) |
|
Theorem | syl3anl1 1230 |
A syllogism inference. (Contributed by NM, 24-Feb-2005.)
|
⊢ (φ
→ ψ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
τ) → η) ⇒ ⊢ (((φ
∧ χ
∧ θ) ∧
τ) → η) |
|
Theorem | syl3anl2 1231 |
A syllogism inference. (Contributed by NM, 24-Feb-2005.)
|
⊢ (φ
→ χ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
τ) → η) ⇒ ⊢ (((ψ
∧ φ
∧ θ) ∧
τ) → η) |
|
Theorem | syl3anl3 1232 |
A syllogism inference. (Contributed by NM, 24-Feb-2005.)
|
⊢ (φ
→ θ) & ⊢ (((ψ
∧ χ
∧ θ) ∧
τ) → η) ⇒ ⊢ (((ψ
∧ χ
∧ φ)
∧ τ)
→ η) |
|
Theorem | syl3anl 1233 |
A triple syllogism inference. (Contributed by NM, 24-Dec-2006.)
|
⊢ (φ
→ ψ) & ⊢ (χ
→ θ) & ⊢ (τ
→ η) & ⊢ (((ψ
∧ θ
∧ η)
∧ ζ)
→ σ)
⇒ ⊢ (((φ ∧ χ ∧ τ) ∧ ζ) → σ) |
|
Theorem | syl3anr1 1234 |
A syllogism inference. (Contributed by NM, 31-Jul-2007.)
|
⊢ (φ
→ ψ) & ⊢ ((χ
∧ (ψ
∧ θ
∧ τ))
→ η)
⇒ ⊢ ((χ ∧ (φ ∧ θ ∧ τ)) → η) |
|
Theorem | syl3anr2 1235 |
A syllogism inference. (Contributed by NM, 1-Aug-2007.)
|
⊢ (φ
→ θ) & ⊢ ((χ
∧ (ψ
∧ θ
∧ τ))
→ η)
⇒ ⊢ ((χ ∧ (ψ ∧ φ ∧ τ)) → η) |
|
Theorem | syl3anr3 1236 |
A syllogism inference. (Contributed by NM, 23-Aug-2007.)
|
⊢ (φ
→ τ) & ⊢ ((χ
∧ (ψ
∧ θ
∧ τ))
→ η)
⇒ ⊢ ((χ ∧ (ψ ∧ θ ∧ φ)) → η) |
|
Theorem | 3impdi 1237 |
Importation inference (undistribute conjunction). (Contributed by NM,
14-Aug-1995.)
|
⊢ (((φ
∧ ψ)
∧ (φ
∧ χ))
→ θ)
⇒ ⊢ ((φ ∧ ψ ∧ χ) → θ) |
|
Theorem | 3impdir 1238 |
Importation inference (undistribute conjunction). (Contributed by NM,
20-Aug-1995.)
|
⊢ (((φ
∧ ψ)
∧ (χ
∧ ψ))
→ θ)
⇒ ⊢ ((φ ∧ χ ∧ ψ) → θ) |
|
Theorem | 3anidm12 1239 |
Inference from idempotent law for conjunction. (Contributed by NM,
7-Mar-2008.)
|
⊢ ((φ
∧ φ
∧ ψ)
→ χ)
⇒ ⊢ ((φ ∧ ψ) → χ) |
|
Theorem | 3anidm13 1240 |
Inference from idempotent law for conjunction. (Contributed by NM,
7-Mar-2008.)
|
⊢ ((φ
∧ ψ
∧ φ)
→ χ)
⇒ ⊢ ((φ ∧ ψ) → χ) |
|
Theorem | 3anidm23 1241 |
Inference from idempotent law for conjunction. (Contributed by NM,
1-Feb-2007.)
|
⊢ ((φ
∧ ψ
∧ ψ)
→ χ)
⇒ ⊢ ((φ ∧ ψ) → χ) |
|
Theorem | 3ori 1242 |
Infer implication from triple disjunction. (Contributed by NM,
26-Sep-2006.)
|
⊢ (φ
∨ ψ
∨ χ) ⇒ ⊢ ((¬ φ ∧ ¬
ψ) → χ) |
|
Theorem | 3jao 1243 |
Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.)
|
⊢ (((φ
→ ψ) ∧ (χ →
ψ) ∧
(θ → ψ)) → ((φ ∨ χ ∨ θ) → ψ)) |
|
Theorem | 3jaob 1244 |
Disjunction of 3 antecedents. (Contributed by NM, 13-Sep-2011.)
|
⊢ (((φ
∨ χ
∨ θ) → ψ) ↔ ((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ))) |
|
Theorem | 3jaoi 1245 |
Disjunction of 3 antecedents (inference). (Contributed by NM,
12-Sep-1995.)
|
⊢ (φ
→ ψ) & ⊢ (χ
→ ψ) & ⊢ (θ
→ ψ)
⇒ ⊢ ((φ ∨ χ ∨ θ) → ψ) |
|
Theorem | 3jaod 1246 |
Disjunction of 3 antecedents (deduction). (Contributed by NM,
14-Oct-2005.)
|
⊢ (φ
→ (ψ → χ))
& ⊢ (φ
→ (θ → χ))
& ⊢ (φ
→ (τ → χ)) ⇒ ⊢ (φ
→ ((ψ
∨ θ
∨ τ) → χ)) |
|
Theorem | 3jaoian 1247 |
Disjunction of 3 antecedents (inference). (Contributed by NM,
14-Oct-2005.)
|
⊢ ((φ
∧ ψ)
→ χ) & ⊢ ((θ
∧ ψ)
→ χ) & ⊢ ((τ
∧ ψ)
→ χ)
⇒ ⊢ (((φ ∨ θ ∨ τ) ∧ ψ) → χ) |
|
Theorem | 3jaodan 1248 |
Disjunction of 3 antecedents (deduction). (Contributed by NM,
14-Oct-2005.)
|
⊢ ((φ
∧ ψ)
→ χ) & ⊢ ((φ
∧ θ) → χ)
& ⊢ ((φ
∧ τ)
→ χ)
⇒ ⊢ ((φ ∧ (ψ ∨ θ ∨ τ)) → χ) |
|
Theorem | 3jaao 1249 |
Inference conjoining and disjoining the antecedents of three
implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof
shortened by Andrew Salmon, 13-May-2011.)
|
⊢ (φ
→ (ψ → χ))
& ⊢ (θ
→ (τ → χ))
& ⊢ (η
→ (ζ → χ)) ⇒ ⊢ ((φ
∧ θ
∧ η)
→ ((ψ
∨ τ
∨ ζ) → χ)) |
|
Theorem | syl3an9b 1250 |
Nested syllogism inference conjoining 3 dissimilar antecedents.
(Contributed by NM, 1-May-1995.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (θ
→ (χ ↔ τ))
& ⊢ (η
→ (τ ↔ ζ)) ⇒ ⊢ ((φ
∧ θ
∧ η)
→ (ψ ↔ ζ)) |
|
Theorem | 3orbi123d 1251 |
Deduction joining 3 equivalences to form equivalence of disjunctions.
(Contributed by NM, 20-Apr-1994.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (φ
→ (θ ↔ τ))
& ⊢ (φ
→ (η ↔ ζ)) ⇒ ⊢ (φ
→ ((ψ
∨ θ
∨ η) ↔ (χ ∨ τ ∨ ζ))) |
|
Theorem | 3anbi123d 1252 |
Deduction joining 3 equivalences to form equivalence of conjunctions.
(Contributed by NM, 22-Apr-1994.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (φ
→ (θ ↔ τ))
& ⊢ (φ
→ (η ↔ ζ)) ⇒ ⊢ (φ
→ ((ψ ∧ θ ∧ η) ↔
(χ ∧
τ ∧
ζ))) |
|
Theorem | 3anbi12d 1253 |
Deduction conjoining and adding a conjunct to equivalences.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (φ
→ (θ ↔ τ)) ⇒ ⊢ (φ
→ ((ψ ∧ θ ∧ η) ↔
(χ ∧
τ ∧
η))) |
|
Theorem | 3anbi13d 1254 |
Deduction conjoining and adding a conjunct to equivalences.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (φ
→ (θ ↔ τ)) ⇒ ⊢ (φ
→ ((ψ ∧ η ∧ θ)
↔ (χ ∧ η ∧ τ))) |
|
Theorem | 3anbi23d 1255 |
Deduction conjoining and adding a conjunct to equivalences.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ))
& ⊢ (φ
→ (θ ↔ τ)) ⇒ ⊢ (φ
→ ((η ∧ ψ ∧ θ)
↔ (η ∧ χ ∧ τ))) |
|
Theorem | 3anbi1d 1256 |
Deduction adding conjuncts to an equivalence. (Contributed by NM,
8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ)) ⇒ ⊢ (φ
→ ((ψ ∧ θ ∧ τ) ↔
(χ ∧
θ ∧
τ))) |
|
Theorem | 3anbi2d 1257 |
Deduction adding conjuncts to an equivalence. (Contributed by NM,
8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ)) ⇒ ⊢ (φ
→ ((θ ∧ ψ ∧ τ) ↔
(θ ∧ χ ∧ τ))) |
|
Theorem | 3anbi3d 1258 |
Deduction adding conjuncts to an equivalence. (Contributed by NM,
8-Sep-2006.)
|
⊢ (φ
→ (ψ ↔ χ)) ⇒ ⊢ (φ
→ ((θ ∧ τ ∧ ψ) ↔
(θ ∧ τ ∧ χ))) |
|
Theorem | 3anim123d 1259 |
Deduction joining 3 implications to form implication of conjunctions.
(Contributed by NM, 24-Feb-2005.)
|
⊢ (φ
→ (ψ → χ))
& ⊢ (φ
→ (θ → τ))
& ⊢ (φ
→ (η → ζ)) ⇒ ⊢ (φ
→ ((ψ ∧ θ ∧ η) →
(χ ∧
τ ∧
ζ))) |
|
Theorem | 3orim123d 1260 |
Deduction joining 3 implications to form implication of disjunctions.
(Contributed by NM, 4-Apr-1997.)
|
⊢ (φ
→ (ψ → χ))
& ⊢ (φ
→ (θ → τ))
& ⊢ (φ
→ (η → ζ)) ⇒ ⊢ (φ
→ ((ψ
∨ θ
∨ η) → (χ ∨ τ ∨ ζ))) |
|
Theorem | an6 1261 |
Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
|
⊢ (((φ
∧ ψ
∧ χ)
∧ (θ ∧ τ ∧ η)) ↔ ((φ ∧ θ) ∧
(ψ ∧
τ) ∧
(χ ∧
η))) |
|
Theorem | 3an6 1262 |
Analog of an4 797 for triple conjunction. (Contributed by Scott
Fenton,
16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
|
⊢ (((φ
∧ ψ)
∧ (χ
∧ θ) ∧
(τ ∧
η)) ↔ ((φ ∧ χ ∧ τ) ∧ (ψ ∧ θ ∧ η))) |
|
Theorem | 3or6 1263 |
Analog of or4 514 for triple conjunction. (Contributed by Scott
Fenton,
16-Mar-2011.)
|
⊢ (((φ
∨ ψ)
∨ (χ
∨ θ) ∨
(τ ∨
η)) ↔ ((φ ∨ χ ∨ τ) ∨ (ψ ∨ θ ∨ η))) |
|
Theorem | mp3an1 1264 |
An inference based on modus ponens. (Contributed by NM,
21-Nov-1994.)
|
⊢ φ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ ((ψ ∧ χ) → θ) |
|
Theorem | mp3an2 1265 |
An inference based on modus ponens. (Contributed by NM,
21-Nov-1994.)
|
⊢ ψ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ ((φ ∧ χ) → θ) |
|
Theorem | mp3an3 1266 |
An inference based on modus ponens. (Contributed by NM,
21-Nov-1994.)
|
⊢ χ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ ((φ ∧ ψ) → θ) |
|
Theorem | mp3an12 1267 |
An inference based on modus ponens. (Contributed by NM,
13-Jul-2005.)
|
⊢ φ
& ⊢ ψ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ (χ → θ) |
|
Theorem | mp3an13 1268 |
An inference based on modus ponens. (Contributed by NM,
14-Jul-2005.)
|
⊢ φ
& ⊢ χ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ (ψ → θ) |
|
Theorem | mp3an23 1269 |
An inference based on modus ponens. (Contributed by NM,
14-Jul-2005.)
|
⊢ ψ
& ⊢ χ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ (φ → θ) |
|
Theorem | mp3an1i 1270 |
An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.)
|
⊢ ψ
& ⊢ (φ
→ ((ψ ∧ χ ∧ θ)
→ τ))
⇒ ⊢ (φ → ((χ ∧ θ) → τ)) |
|
Theorem | mp3anl1 1271 |
An inference based on modus ponens. (Contributed by NM,
24-Feb-2005.)
|
⊢ φ
& ⊢ (((φ
∧ ψ
∧ χ)
∧ θ) → τ) ⇒ ⊢ (((ψ
∧ χ)
∧ θ) → τ) |
|
Theorem | mp3anl2 1272 |
An inference based on modus ponens. (Contributed by NM,
24-Feb-2005.)
|
⊢ ψ
& ⊢ (((φ
∧ ψ
∧ χ)
∧ θ) → τ) ⇒ ⊢ (((φ
∧ χ)
∧ θ) → τ) |
|
Theorem | mp3anl3 1273 |
An inference based on modus ponens. (Contributed by NM,
24-Feb-2005.)
|
⊢ χ
& ⊢ (((φ
∧ ψ
∧ χ)
∧ θ) → τ) ⇒ ⊢ (((φ
∧ ψ)
∧ θ) → τ) |
|
Theorem | mp3anr1 1274 |
An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
|
⊢ ψ
& ⊢ ((φ
∧ (ψ
∧ χ
∧ θ)) → τ) ⇒ ⊢ ((φ
∧ (χ
∧ θ)) → τ) |
|
Theorem | mp3anr2 1275 |
An inference based on modus ponens. (Contributed by NM,
24-Nov-2006.)
|
⊢ χ
& ⊢ ((φ
∧ (ψ
∧ χ
∧ θ)) → τ) ⇒ ⊢ ((φ
∧ (ψ
∧ θ)) → τ) |
|
Theorem | mp3anr3 1276 |
An inference based on modus ponens. (Contributed by NM,
19-Oct-2007.)
|
⊢ θ
& ⊢ ((φ
∧ (ψ
∧ χ
∧ θ)) → τ) ⇒ ⊢ ((φ
∧ (ψ
∧ χ))
→ τ) |
|
Theorem | mp3an 1277 |
An inference based on modus ponens. (Contributed by NM,
14-May-1999.)
|
⊢ φ
& ⊢ ψ
& ⊢ χ
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ θ |
|
Theorem | mpd3an3 1278 |
An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.)
|
⊢ ((φ
∧ ψ)
→ χ) & ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ ((φ ∧ ψ) → θ) |
|
Theorem | mpd3an23 1279 |
An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ (φ → θ) |
|
Theorem | mp3and 1280 |
A deduction based on modus ponens. (Contributed by Mario Carneiro,
24-Dec-2016.)
|
⊢ (φ
→ ψ) & ⊢ (φ
→ χ) & ⊢ (φ
→ θ) & ⊢ (φ
→ ((ψ ∧ χ ∧ θ)
→ τ))
⇒ ⊢ (φ → τ) |
|
Theorem | biimp3a 1281 |
Infer implication from a logical equivalence. Similar to biimpa 470.
(Contributed by NM, 4-Sep-2005.)
|
⊢ ((φ
∧ ψ)
→ (χ ↔ θ)) ⇒ ⊢ ((φ
∧ ψ
∧ χ)
→ θ) |
|
Theorem | biimp3ar 1282 |
Infer implication from a logical equivalence. Similar to biimpar 471.
(Contributed by NM, 2-Jan-2009.)
|
⊢ ((φ
∧ ψ)
→ (χ ↔ θ)) ⇒ ⊢ ((φ
∧ ψ
∧ θ) → χ) |
|
Theorem | 3anandis 1283 |
Inference that undistributes a triple conjunction in the antecedent.
(Contributed by NM, 18-Apr-2007.)
|
⊢ (((φ
∧ ψ)
∧ (φ
∧ χ)
∧ (φ
∧ θ)) → τ) ⇒ ⊢ ((φ
∧ (ψ
∧ χ
∧ θ)) → τ) |
|
Theorem | 3anandirs 1284 |
Inference that undistributes a triple conjunction in the antecedent.
(Contributed by NM, 25-Jul-2006.)
|
⊢ (((φ
∧ θ) ∧
(ψ ∧
θ) ∧ (χ ∧ θ))
→ τ)
⇒ ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
|
Theorem | ecase23d 1285 |
Deduction for elimination by cases. (Contributed by NM,
22-Apr-1994.)
|
⊢ (φ
→ ¬ χ) & ⊢ (φ
→ ¬ θ) & ⊢ (φ
→ (ψ
∨ χ
∨ θ)) ⇒ ⊢ (φ
→ ψ) |
|
Theorem | 3ecase 1286 |
Inference for elimination by cases. (Contributed by NM,
13-Jul-2005.)
|
⊢ (¬ φ → θ)
& ⊢ (¬ ψ → θ)
& ⊢ (¬ χ → θ)
& ⊢ ((φ
∧ ψ
∧ χ)
→ θ)
⇒ ⊢ θ |
|
1.2.9 Logical 'nand' (Sheffer
stroke)
|
|
Syntax | wnan 1287 |
Extend wff definition to include alternative denial ('nand').
|
wff
(φ ⊼ ψ) |
|
Definition | df-nan 1288 |
Define incompatibility, or alternative denial ('not-and' or 'nand'). This
is also called the Sheffer stroke, represented by a vertical bar, but we
use a different symbol to avoid ambiguity with other uses of the vertical
bar. In the second edition of Principia Mathematica (1927), Russell and
Whitehead used the Sheffer stroke and suggested it as a replacement for
the "or" and "not" operations of the first edition.
However, in practice,
"or" and "not" are more widely used. After we define
the constant true
⊤ (df-tru 1319) and the constant false ⊥ (df-fal 1320), we will be
able to prove these truth table values: (( ⊤ ⊼ ⊤ ) ↔ ⊥ )
(trunantru 1354), (( ⊤ ⊼ ⊥ ) ↔ ⊤ ) (trunanfal 1355),
(( ⊥ ⊼ ⊤ ) ↔
⊤ ) (falnantru 1356), and
(( ⊥ ⊼ ⊥ ) ↔
⊤ ) (falnanfal 1357). Contrast with ∧
(df-an 360),
∨ (df-or 359), → (wi 4), and
⊻
(df-xor 1305) . (Contributed by Jeff Hoffman,
19-Nov-2007.)
|
⊢ ((φ
⊼ ψ) ↔ ¬ (φ ∧ ψ)) |
|
Theorem | nanan 1289 |
Write 'and' in terms of 'nand'. (Contributed by Mario Carneiro,
9-May-2015.)
|
⊢ ((φ
∧ ψ)
↔ ¬ (φ ⊼ ψ)) |
|
Theorem | nancom 1290 |
The 'nand' operator commutes. (Contributed by Mario Carneiro,
9-May-2015.)
|
⊢ ((φ
⊼ ψ) ↔ (ψ ⊼ φ)) |
|
Theorem | nannan 1291 |
Lemma for handling nested 'nand's. (Contributed by Jeff Hoffman,
19-Nov-2007.)
|
⊢ ((φ
⊼ (χ ⊼ ψ)) ↔ (φ → (χ ∧ ψ))) |
|
Theorem | nanim 1292 |
Show equivalence between implication and the Nicod version. To derive
nic-dfim 1434, apply nanbi 1294. (Contributed by Jeff Hoffman,
19-Nov-2007.)
|
⊢ ((φ
→ ψ) ↔ (φ ⊼
(ψ ⊼ ψ))) |
|
Theorem | nannot 1293 |
Show equivalence between negation and the Nicod version. To derive
nic-dfneg 1435, apply nanbi 1294. (Contributed by Jeff Hoffman,
19-Nov-2007.)
|
⊢ (¬ ψ ↔ (ψ ⊼ ψ)) |
|
Theorem | nanbi 1294 |
Show equivalence between the bidirectional and the Nicod version.
(Contributed by Jeff Hoffman, 19-Nov-2007.)
|
⊢ ((φ
↔ ψ) ↔ ((φ ⊼ ψ) ⊼
((φ ⊼ φ)
⊼ (ψ ⊼ ψ)))) |
|
Theorem | nanbi1 1295 |
Introduce a right anti-conjunct to both sides of a logical equivalence.
(Contributed by SF, 2-Jan-2018.)
|
⊢ ((φ
↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) |
|
Theorem | nanbi2 1296 |
Introduce a left anti-conjunct to both sides of a logical equivalence.
(Contributed by SF, 2-Jan-2018.)
|
⊢ ((φ
↔ ψ) → ((χ ⊼ φ) ↔ (χ ⊼ ψ))) |
|
Theorem | nanbi12 1297 |
Join two logical equivalences with anti-conjunction. (Contributed by SF,
2-Jan-2018.)
|
⊢ (((φ
↔ ψ) ∧ (χ ↔
θ)) → ((φ ⊼ χ) ↔ (ψ ⊼ θ))) |
|
Theorem | nanbi1i 1298 |
Introduce a right anti-conjunct to both sides of a logical equivalence.
(Contributed by SF, 2-Jan-2018.)
|
⊢ (φ
↔ ψ)
⇒ ⊢ ((φ ⊼ χ) ↔ (ψ ⊼ χ)) |
|
Theorem | nanbi2i 1299 |
Introduce a left anti-conjunct to both sides of a logical equivalence.
(Contributed by SF, 2-Jan-2018.)
|
⊢ (φ
↔ ψ)
⇒ ⊢ ((χ ⊼ φ) ↔ (χ ⊼ ψ)) |
|
Theorem | nanbi12i 1300 |
Join two logical equivalences with anti-conjunction. (Contributed by
SF, 2-Jan-2018.)
|
⊢ (φ
↔ ψ) & ⊢ (χ
↔ θ)
⇒ ⊢ ((φ ⊼ χ) ↔ (ψ ⊼ θ)) |