New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con2bii | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (φ ↔ ¬ ψ) |
Ref | Expression |
---|---|
con2bii | ⊢ (ψ ↔ ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bii.1 | . . . 4 ⊢ (φ ↔ ¬ ψ) | |
2 | 1 | bicomi 193 | . . 3 ⊢ (¬ ψ ↔ φ) |
3 | 2 | con1bii 321 | . 2 ⊢ (¬ φ ↔ ψ) |
4 | 3 | bicomi 193 | 1 ⊢ (ψ ↔ ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: xor3 346 imnan 411 annim 414 anor 475 pm4.53 478 pm4.55 480 oran 482 3ianor 949 nanan 1289 xnor 1306 xorass 1308 xorneg1 1311 xorneg 1313 alnex 1543 exnal 1574 2exnexn 1580 equs3 1644 19.3v 1665 19.9vOLD 1697 equsex 1962 nne 2521 dfral2 2627 dfrex2 2628 r19.35 2759 elin 3220 dblcompl 3228 ddif 3399 dfun2 3491 dfin2 3492 difin 3493 dfnul2 3553 rab0 3572 disj4 3600 dfimak2 4299 dfint3 4319 dfpw2 4328 dfaddc2 4382 nndisjeq 4430 ltfinex 4465 ssfin 4471 tfinltfin 4502 evenfinex 4504 oddfinex 4505 evenoddnnnul 4515 evenodddisjlem1 4516 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 imasn 5019 brimage 5794 releqmpt2 5810 disjex 5824 funsex 5829 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 ltcirr 6273 |
Copyright terms: Public domain | W3C validator |