NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nancom GIF version

Theorem nancom 1290
Description: The 'nand' operator commutes. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
nancom ((φ ψ) ↔ (ψ φ))

Proof of Theorem nancom
StepHypRef Expression
1 ancom 437 . . 3 ((φ ψ) ↔ (ψ φ))
21notbii 287 . 2 (¬ (φ ψ) ↔ ¬ (ψ φ))
3 df-nan 1288 . 2 ((φ ψ) ↔ ¬ (φ ψ))
4 df-nan 1288 . 2 ((ψ φ) ↔ ¬ (ψ φ))
52, 3, 43bitr4i 268 1 ((φ ψ) ↔ (ψ φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nanbi2  1296  falnantru  1356  nincom  3227
  Copyright terms: Public domain W3C validator