| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nancom | GIF version | ||
| Description: The 'nand' operator commutes. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| nancom | ⊢ ((φ ⊼ ψ) ↔ (ψ ⊼ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
| 2 | 1 | notbii 287 | . 2 ⊢ (¬ (φ ∧ ψ) ↔ ¬ (ψ ∧ φ)) |
| 3 | df-nan 1288 | . 2 ⊢ ((φ ⊼ ψ) ↔ ¬ (φ ∧ ψ)) | |
| 4 | df-nan 1288 | . 2 ⊢ ((ψ ⊼ φ) ↔ ¬ (ψ ∧ φ)) | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ ⊼ ψ) ↔ (ψ ⊼ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
| This theorem is referenced by: nanbi2 1296 falnantru 1356 nincom 3227 |
| Copyright terms: Public domain | W3C validator |