NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanbi12d GIF version

Theorem nanbi12d 1303
Description: Join two logical equivalences with anti-conjunction. (Contributed by Scott Fenton, 2-Jan-2018.)
Hypotheses
Ref Expression
nanbid.1 (φ → (ψχ))
nanbi12d.2 (φ → (θτ))
Assertion
Ref Expression
nanbi12d (φ → ((ψ θ) ↔ (χ τ)))

Proof of Theorem nanbi12d
StepHypRef Expression
1 nanbid.1 . 2 (φ → (ψχ))
2 nanbi12d.2 . 2 (φ → (θτ))
3 nanbi12 1297 . 2 (((ψχ) (θτ)) → ((ψ θ) ↔ (χ τ)))
41, 2, 3syl2anc 642 1 (φ → ((ψ θ) ↔ (χ τ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  ninjust  3211  elning  3218  elun  3221
  Copyright terms: Public domain W3C validator