NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanbi2d GIF version

Theorem nanbi2d 1302
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nanbid.1 (φ → (ψχ))
Assertion
Ref Expression
nanbi2d (φ → ((θ ψ) ↔ (θ χ)))

Proof of Theorem nanbi2d
StepHypRef Expression
1 nanbid.1 . 2 (φ → (ψχ))
2 nanbi2 1296 . 2 ((ψχ) → ((θ ψ) ↔ (θ χ)))
31, 2syl 15 1 (φ → ((θ ψ) ↔ (θ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator