NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanbi12 GIF version

Theorem nanbi12 1297
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
nanbi12 (((φψ) (χθ)) → ((φ χ) ↔ (ψ θ)))

Proof of Theorem nanbi12
StepHypRef Expression
1 nanbi1 1295 . 2 ((φψ) → ((φ χ) ↔ (ψ χ)))
2 nanbi2 1296 . 2 ((χθ) → ((ψ χ) ↔ (ψ θ)))
31, 2sylan9bb 680 1 (((φψ) (χθ)) → ((φ χ) ↔ (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nanbi12i  1300  nanbi12d  1303
  Copyright terms: Public domain W3C validator