New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nanbi12 | GIF version |
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi12 | ⊢ (((φ ↔ ψ) ∧ (χ ↔ θ)) → ((φ ⊼ χ) ↔ (ψ ⊼ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 1295 | . 2 ⊢ ((φ ↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) | |
2 | nanbi2 1296 | . 2 ⊢ ((χ ↔ θ) → ((ψ ⊼ χ) ↔ (ψ ⊼ θ))) | |
3 | 1, 2 | sylan9bb 680 | 1 ⊢ (((φ ↔ ψ) ∧ (χ ↔ θ)) → ((φ ⊼ χ) ↔ (ψ ⊼ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nanbi12i 1300 nanbi12d 1303 |
Copyright terms: Public domain | W3C validator |