New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nanbi2 | GIF version |
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi2 | ⊢ ((φ ↔ ψ) → ((χ ⊼ φ) ↔ (χ ⊼ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 1295 | . 2 ⊢ ((φ ↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) | |
2 | nancom 1290 | . 2 ⊢ ((χ ⊼ φ) ↔ (φ ⊼ χ)) | |
3 | nancom 1290 | . 2 ⊢ ((χ ⊼ ψ) ↔ (ψ ⊼ χ)) | |
4 | 1, 2, 3 | 3bitr4g 279 | 1 ⊢ ((φ ↔ ψ) → ((χ ⊼ φ) ↔ (χ ⊼ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nanbi12 1297 nanbi2i 1299 nanbi2d 1302 |
Copyright terms: Public domain | W3C validator |