NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon1ai GIF version

Theorem necon1ai 2559
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
necon1ai.1 φA = B)
Assertion
Ref Expression
necon1ai (ABφ)

Proof of Theorem necon1ai
StepHypRef Expression
1 df-ne 2519 . 2 (AB ↔ ¬ A = B)
2 necon1ai.1 . . 3 φA = B)
32con1i 121 . 2 A = Bφ)
41, 3sylbi 187 1 (ABφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  necon1i  2561  tz6.12i  5349  elfvdm  5352  elovex12  5649
  Copyright terms: Public domain W3C validator