New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylbi | GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbi.1 | ⊢ (φ ↔ ψ) |
sylbi.2 | ⊢ (ψ → χ) |
Ref | Expression |
---|---|
sylbi | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbi.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → ψ) |
3 | sylbi.2 | . 2 ⊢ (ψ → χ) | |
4 | 2, 3 | syl 15 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bi2 189 3imtr4i 257 sylnbi 297 imp 418 an12s 776 an32s 779 an4s 799 oibabs 851 3simpb 953 3simpc 954 3imp 1145 3com12 1155 3com13 1156 syl3anb 1225 19.33b 1608 exintrbi 1613 ax17e 1618 spimfw 1646 a6e 1751 nfr 1761 19.9t 1779 nfnd 1791 nfndOLD 1792 equs5e 1888 exdistrf 1971 equvini 1987 equveli 1988 ax10-16 2190 euex 2227 eumo0 2228 mopick 2266 2euex 2276 2mo 2282 2eu3 2286 exists2 2294 eqcoms 2356 eleq2s 2445 nfcr 2482 necon3bi 2558 necon1ai 2559 necon2ai 2562 pm2.61ne 2592 pm2.61ine 2593 rexex 2674 rsp 2675 ralim 2686 r19.36av 2760 r19.37 2761 r19.44av 2768 r19.45av 2769 gencl 2888 gencbvex 2902 vtoclgf 2914 pm13.183 2980 mo2icl 3016 mob2 3017 reu3 3027 rmoim 3036 2reuswap 3039 sbcex 3056 ra5 3131 sseq1 3293 unineq 3506 dfrab3ss 3534 reldisj 3595 disjel 3598 pssdif 3613 difin0ss 3617 uneqdifeq 3639 r19.2z 3640 r19.3rz 3642 r19.3rzv 3644 ralidm 3654 ifnefalse 3671 ifbi 3680 nelpri 3755 difprsn2 3849 diftpsn3 3850 pwpw0 3856 ssunsn2 3866 snsssn 3874 pwsnALT 3883 intmin4 3956 dfiin2g 4001 iinss2 4019 unipw 4118 pwadjoin 4120 preqr2 4126 preq12b 4128 opkthg 4132 pw10 4162 pw10b 4167 pw1disj 4168 pw1ss 4170 sikss1c1c 4268 opkelimagekg 4272 ins2kss 4280 ins3kss 4281 cokrelk 4285 eqpw1uni 4331 pw1eqadj 4333 euabex 4335 iotauni 4352 iota1 4354 iota4 4358 reiotacl2 4364 dfiota4 4373 0nelsuc 4401 nndisjeq 4430 snfi 4432 lefinlteq 4464 ssfin 4471 tfinprop 4490 evenoddnnnul 4515 evenodddisj 4517 sfin112 4530 sfintfin 4533 sfinltfin 4536 sfin111 4537 spfinsfincl 4540 vfinspnn 4542 vfinspsslem1 4551 copsexg 4608 ralxpf 4828 optocl 4839 breldm 4912 proj1eldm 4928 dmcoss 4972 xpnz 5046 xp11 5057 xpcan 5058 xpcan2 5059 dfco2a 5082 cores2 5092 dfxp2 5114 dffun8 5135 fununi 5161 imadif 5172 fneu 5188 ffoss 5315 f1o00 5318 fo00 5319 nfunsn 5354 fvun1 5380 fvimacnv 5404 unpreima 5409 inpreima 5410 respreima 5411 fvpr1 5450 1stfo 5506 2ndfo 5507 xpnedisj 5514 1st2nd2 5517 oprabid 5551 oprssdm 5613 fvmptss 5706 fvmptss2 5726 op1st2nd 5791 oqelins4 5795 addcfnex 5825 pw1fnf1o 5856 clos1nrel 5887 weds 5939 ecexr 5951 mapprc 6005 mapsspm 6022 mapsspw 6023 map0b 6025 map0 6026 ensymi 6037 entr 6039 idssen 6041 en0 6043 fundmen 6044 xpen 6056 enpw1 6063 enmap2 6069 enmap1 6075 enprmaplem3 6079 nenpw1pwlem2 6086 ncseqnc 6129 muccl 6133 muccom 6135 mucass 6136 1cnc 6140 muc0 6143 mucid1 6144 ncdisjeq 6149 tcdi 6165 sbthlem3 6206 addlec 6209 nc0le1 6217 dflec3 6222 nclenc 6223 lenc 6224 tc11 6229 taddc 6230 letc 6232 ce2le 6234 cet 6235 te0c 6238 ce0lenc1 6240 tlenc1c 6241 addcdi 6251 muc0or 6253 nchoicelem8 6297 nchoicelem12 6301 nchoicelem14 6303 frecxp 6315 scancan 6332 |
Copyright terms: Public domain | W3C validator |