New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con1i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.a | ⊢ (¬ φ → ψ) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ ψ → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ ψ → ¬ ψ) | |
2 | con1i.a | . 2 ⊢ (¬ φ → ψ) | |
3 | 1, 2 | nsyl2 119 | 1 ⊢ (¬ ψ → φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl4 134 pm2.24i 136 impi 140 simplim 143 pm3.13 487 pm5.55 867 rb-ax2 1518 rb-ax3 1519 rb-ax4 1520 ax17e 1618 spimfw 1646 hba1w 1707 ax5o 1749 hbnt 1775 hba1OLD 1787 nfndOLD 1792 hbimdOLD 1816 naecoms 1948 hba1-o 2149 ax467 2169 naecoms-o 2178 necon3bi 2558 necon1ai 2559 nfunsn 5354 |
Copyright terms: Public domain | W3C validator |