NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon1bbid GIF version

Theorem necon1bbid 2571
Description: Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.)
Hypothesis
Ref Expression
necon1bbid.1 (φ → (ABψ))
Assertion
Ref Expression
necon1bbid (φ → (¬ ψA = B))

Proof of Theorem necon1bbid
StepHypRef Expression
1 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
2 necon1bbid.1 . . 3 (φ → (ABψ))
31, 2syl5bbr 250 . 2 (φ → (¬ A = Bψ))
43con1bid 320 1 (φ → (¬ ψA = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator