NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con1bid GIF version

Theorem con1bid 320
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (φ → (¬ ψχ))
Assertion
Ref Expression
con1bid (φ → (¬ χψ))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (φ → (¬ ψχ))
21bicomd 192 . . 3 (φ → (χ ↔ ¬ ψ))
32con2bid 319 . 2 (φ → (ψ ↔ ¬ χ))
43bicomd 192 1 (φ → (¬ χψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  pm5.18  345  necon1abid  2570  necon1bbid  2571  opkelimagekg  4272
  Copyright terms: Public domain W3C validator