NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon2abii GIF version

Theorem necon2abii 2572
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007.)
Hypothesis
Ref Expression
necon2abii.1 (A = B ↔ ¬ φ)
Assertion
Ref Expression
necon2abii (φAB)

Proof of Theorem necon2abii
StepHypRef Expression
1 necon2abii.1 . . . 4 (A = B ↔ ¬ φ)
21bicomi 193 . . 3 φA = B)
32necon1abii 2568 . 2 (ABφ)
43bicomi 193 1 (φAB)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator