NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3abii GIF version

Theorem necon3abii 2547
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (A = Bφ)
Assertion
Ref Expression
necon3abii (AB ↔ ¬ φ)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2519 . 2 (AB ↔ ¬ A = B)
2 necon3abii.1 . 2 (A = Bφ)
31, 2xchbinx 301 1 (AB ↔ ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  necon3bbii  2548  necon3bii  2549  necompl  3545  n0f  3559  foconst  5281
  Copyright terms: Public domain W3C validator