NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necompl GIF version

Theorem necompl 3545
Description: A class is not equal to its complement. (Contributed by SF, 11-Jan-2015.)
Assertion
Ref Expression
necompl AA

Proof of Theorem necompl
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 pm5.19 349 . . . . 5 ¬ (x A ↔ ¬ x A)
2 vex 2863 . . . . . . 7 x V
32elcompl 3226 . . . . . 6 (x A ↔ ¬ x A)
43bibi2i 304 . . . . 5 ((x Ax A) ↔ (x A ↔ ¬ x A))
51, 4mtbir 290 . . . 4 ¬ (x Ax A)
6 19.8a 1756 . . . 4 (¬ (x Ax A) → x ¬ (x Ax A))
75, 6ax-mp 5 . . 3 x ¬ (x Ax A)
8 dfcleq 2347 . . . . 5 (A = ∼ Ax(x Ax A))
98necon3abii 2547 . . . 4 (A ≠ ∼ A ↔ ¬ x(x Ax A))
10 exnal 1574 . . . 4 (x ¬ (x Ax A) ↔ ¬ x(x Ax A))
119, 10bitr4i 243 . . 3 (A ≠ ∼ Ax ¬ (x Ax A))
127, 11mpbir 200 . 2 A ≠ ∼ A
1312necomi 2599 1 AA
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wal 1540  wex 1541   wcel 1710  wne 2517  ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  nfunv  5139  endisj  6052  ncaddccl  6145  tcdi  6165
  Copyright terms: Public domain W3C validator