New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > necompl | GIF version |
Description: A class is not equal to its complement. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
necompl | ⊢ ∼ A ≠ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 349 | . . . . 5 ⊢ ¬ (x ∈ A ↔ ¬ x ∈ A) | |
2 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
3 | 2 | elcompl 3226 | . . . . . 6 ⊢ (x ∈ ∼ A ↔ ¬ x ∈ A) |
4 | 3 | bibi2i 304 | . . . . 5 ⊢ ((x ∈ A ↔ x ∈ ∼ A) ↔ (x ∈ A ↔ ¬ x ∈ A)) |
5 | 1, 4 | mtbir 290 | . . . 4 ⊢ ¬ (x ∈ A ↔ x ∈ ∼ A) |
6 | 19.8a 1756 | . . . 4 ⊢ (¬ (x ∈ A ↔ x ∈ ∼ A) → ∃x ¬ (x ∈ A ↔ x ∈ ∼ A)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ∃x ¬ (x ∈ A ↔ x ∈ ∼ A) |
8 | dfcleq 2347 | . . . . 5 ⊢ (A = ∼ A ↔ ∀x(x ∈ A ↔ x ∈ ∼ A)) | |
9 | 8 | necon3abii 2547 | . . . 4 ⊢ (A ≠ ∼ A ↔ ¬ ∀x(x ∈ A ↔ x ∈ ∼ A)) |
10 | exnal 1574 | . . . 4 ⊢ (∃x ¬ (x ∈ A ↔ x ∈ ∼ A) ↔ ¬ ∀x(x ∈ A ↔ x ∈ ∼ A)) | |
11 | 9, 10 | bitr4i 243 | . . 3 ⊢ (A ≠ ∼ A ↔ ∃x ¬ (x ∈ A ↔ x ∈ ∼ A)) |
12 | 7, 11 | mpbir 200 | . 2 ⊢ A ≠ ∼ A |
13 | 12 | necomi 2599 | 1 ⊢ ∼ A ≠ A |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 ∈ wcel 1710 ≠ wne 2517 ∼ ccompl 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 |
This theorem is referenced by: nfunv 5139 endisj 6052 ncaddccl 6145 tcdi 6165 |
Copyright terms: Public domain | W3C validator |