New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xchbinx | GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (φ ↔ ¬ ψ) |
xchbinx.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
xchbinx | ⊢ (φ ↔ ¬ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (φ ↔ ¬ ψ) | |
2 | xchbinx.2 | . . 3 ⊢ (ψ ↔ χ) | |
3 | 2 | notbii 287 | . 2 ⊢ (¬ ψ ↔ ¬ χ) |
4 | 1, 3 | bitri 240 | 1 ⊢ (φ ↔ ¬ χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: xchbinxr 302 con1bii 321 pm4.52 477 pm4.54 479 xordi 865 3anor 948 nannan 1291 nannot 1293 nanbi 1294 truxortru 1358 truxorfal 1359 falxorfal 1361 nic-mpALT 1437 nic-axALT 1439 sban 2069 sbex 2128 necon3abii 2547 ne3anior 2603 elcomplg 3219 inssdif0 3618 dfimak2 4299 nnsucelrlem3 4427 nndisjeq 4430 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlower 4484 eqtfinrelk 4487 nnadjoinlem1 4520 nnadjoinpw 4522 sfindbl 4531 setconslem2 4733 setconslem3 4734 dm0rn0 4922 brimage 5794 releqel 5808 releqmpt2 5810 fnfullfunlem1 5857 refex 5912 extex 5916 nenpw1pwlem1 6085 ovcelem1 6172 tcfnex 6245 nchoicelem10 6299 |
Copyright terms: Public domain | W3C validator |