NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon4bbid GIF version

Theorem necon4bbid 2582
Description: Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012.)
Hypothesis
Ref Expression
necon4bbid.1 (φ → (¬ ψAB))
Assertion
Ref Expression
necon4bbid (φ → (ψA = B))

Proof of Theorem necon4bbid
StepHypRef Expression
1 necon4bbid.1 . . . 4 (φ → (¬ ψAB))
21bicomd 192 . . 3 (φ → (AB ↔ ¬ ψ))
32necon4abid 2581 . 2 (φ → (A = Bψ))
43bicomd 192 1 (φ → (ψA = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator