NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nemtbir GIF version

Theorem nemtbir 2605
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 AB
nemtbir.2 (φA = B)
Assertion
Ref Expression
nemtbir ¬ φ

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 AB
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
31, 2mpbi 199 . 2 ¬ A = B
4 nemtbir.2 . 2 (φA = B)
53, 4mtbir 290 1 ¬ φ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  ncvsq  6257
  Copyright terms: Public domain W3C validator