NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtbir GIF version

Theorem mtbir 290
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.)
Hypotheses
Ref Expression
mtbir.1 ¬ ψ
mtbir.2 (φψ)
Assertion
Ref Expression
mtbir ¬ φ

Proof of Theorem mtbir
StepHypRef Expression
1 mtbir.1 . 2 ¬ ψ
2 mtbir.2 . . 3 (φψ)
32bicomi 193 . 2 (ψφ)
41, 3mtbi 289 1 ¬ φ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  fal  1322  nonconne  2524  nemtbir  2605  ru  3046  pssirr  3370  indifdir  3512  necompl  3545  noel  3555  npss0  3590  iun0  4023  0iun  4024  0nel1c  4160  0nelsuc  4401  nndisjeq  4430  addcnul1  4453  eqtfinrelk  4487  nulnnn  4557  0cnelphi  4598  dm0  4919  cnv0  5032  co02  5093  co01  5094  nfunv  5139  imadif  5172  fv01  5355  1p1e2c  6156  2p1e3c  6157  fnfreclem2  6319
  Copyright terms: Public domain W3C validator