New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbi | GIF version |
Description: An inference from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbi.min | ⊢ φ |
mpbi.maj | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
mpbi | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi.min | . 2 ⊢ φ | |
2 | mpbi.maj | . . 3 ⊢ (φ ↔ ψ) | |
3 | 2 | biimpi 186 | . 2 ⊢ (φ → ψ) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74i 236 notbii 287 pm5.19 349 ori 364 imori 402 pm4.71i 613 pm4.71ri 614 pm5.32i 618 pm3.24 852 pm5.16 860 biluk 899 4exmid 905 dn1 932 3ori 1242 trubifal 1351 nic-dfim 1434 nic-dfneg 1435 nic-mp 1436 nic-mpALT 1437 tbw-negdf 1464 rb-imdf 1515 mpto2 1534 mpto2OLD 1535 mtp-xorOLD 1537 mpgbi 1549 19.35i 1601 19.36i 1872 19.37aiv 1900 sbco 2083 sbidm 2085 axi12 2333 eqcomi 2357 eqtri 2373 eleqtri 2425 neeqtri 2538 necomi 2599 nemtbir 2605 nrex 2717 rexlimi 2732 isseti 2866 vtocl2 2911 vtocl3 2912 eueq1 3010 euxfr2 3022 sseqtri 3304 3sstr3i 3310 pssn2lp 3371 equncomi 3411 unssi 3439 ssini 3479 unabs 3486 inabs 3487 dfin4 3496 npss0 3590 difid 3619 disjdif 3623 difin0 3624 snid 3761 snsssn 3874 iinrab2 4030 rintn0 4057 axxpprim 4091 axcnvprim 4092 axssetprim 4093 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 iota4an 4359 ltfinirr 4458 evenoddnnnul 4515 evenodddisj 4517 vfinspeqtncv 4554 0cnelphi 4598 copsexg 4608 opeq 4620 breqtri 4663 rn0 4970 dmresi 5005 nfunv 5139 fnopab 5208 xpsn 5436 fvi 5443 fvsnun2 5449 xpnedisj 5514 fnmpti 5691 fmpti 5694 fncup 5814 addcfn 5826 epprc 5828 fncross 5847 fnfullfun 5859 fvfullfun 5865 fnmap 6008 fnpm 6009 dmen 6042 xpsnen 6050 xpcomen 6053 xpassen 6058 enpw1pw 6076 ncpwpw1 6154 ce0addcnnul 6180 sbthlem1 6204 cet 6235 0lt1c 6259 nmembers1lem2 6270 ltcirr 6273 nnc3n3p1 6279 nchoicelem5 6294 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |